
Lifting Imprecise Values

Gerhard Navratil, Farid Karimipour, Andrew U. Frank

Institute for Geoinformation and Cartography, Vienna University of Tech-
nology, Gusshausstr. 27-29, A-1040 Vienna, Austria,
[navratil,karimipour,frank]@geoinfo.tuwien.ac.at

Abstract

The article presents a conceptual framework for computations with impre-
cise values. Typically, the treatment of imprecise values differs from the
treatment of precise values. While precise computations use a single num-
ber to characterize a value, computations with imprecise values must deal
with several numbers for each value. This results in significant changes in
the program code because values are represented, e.g., by expectation and
standard deviation and both values must be considered within the compu-
tations. It would be desirable to have a solution where only limited
changes in very specific places of the code are necessary. The mathemati-
cal concept of lifting may lead to such a solution.

1 Introduction

The integration of quality descriptions is one of the most important practi-
cal problems for the GIS research and development community. All data in
a GIS have limited precision leading to a corresponding level of uncer-
tainty about the true values. These uncertainties spread if the data are used
for other computations. The determination of the result’s uncertainty is
crucial for the user. Results are only meaningful if the possible deviations
of the result do not change the result significantly. Assessment of the un-

certainty of the result requires knowledge on the uncertainty of the original
data. This knowledge must then be carried along with each processing
step.

We propose a conceptual framework that deals with the problem of er-
ror propagation in a mathematically clean and simple way. Frank demon-
strated the use of functors to lift map algebra from a pure spatial context to
a spatio-temporal context (Erwig and Schneider, 1999; Frank, 2005). The
same concept has been used to lift the basic algebraic operations for num-
bers to normally distributed values (Navratil, 2006). Since normally dis-
tributed values are only one kind of description for imprecision we extend
the concept to other kinds of descriptions.

The article is structured as follows: In section we discuss different ap-
proaches to describe imprecise values. Section 3 shows how errors propa-
gate and how the result can be computed. Sections 4 and 5 introduce the
concept of lifting and show an implementation of lifting for error propaga-
tion. The paper concludes with a discussion of aspects that need to be ad-
dressed in the future.

2 Imprecise Values

The results of measurements are not precise numbers (Viertl, 2002). The
limitation of precision propagates when using these values in mathematical
models. Several methods have been developed to cope with that problem.
We arbitrarily selected the three different models normally distributed val-
ues, intervals, and fuzzy values for the discussion in the remainder of the
paper. Other models, e.g., for skewed models were left for future research.

2.1 Normally Distributed Values

Observations of geometric qualities like distances or angles are usually as-
sumed to be normally distributed. Maybe even other physical qualities like
density can be assumed to be normally distributed. The reason for this as-
sumption is the central limit theorem. It states that, if the sum of many in-
dependent and identically distributed variables has a finite variance, then
the sum will be approximately normally distributed. Two variables are in-
dependent if the probability for the occurrence of one event is independent
from the result of the other event. An example for independent variables is
the numbers resulting from rolling dices. Weather conditions in a specified
location on successive days are dependent events.

Normal distribution is defined by two parameters, the expected value μ
and the statistical dispersion σ. Measures for the statistical dispersion are
variance and standard distribution as the positive square root of the vari-
ance. In the following the variance will be used.

Normally distributed values follow the density function

()
()

2

2

2

2
1 σ

μ

πσ

−
−

=
x

exf (1)

The area below the density function is a probability measure. The area for
an arbitrary interval is the probability that a randomly picked value belong-
ing to this distribution lies within the interval. The density function is de-
fined for the interval]-∞,+∞[and is symmetric (compare Fig. 1).

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

Fig. 1. Density function for a normalized (μ = 0, σ = 1) normal distribution. The
horizontal axis is the outcome x and the vertical axis specifies the density f(x).

Measures for dependency are covariance and correlation. Covariance de-
scribes the common variation of two observations. The units of measure-
ment depend on the units of measurement of the observations. The correla-
tion on the other hand is dimensionless and describes the linear
dependence between the two observations. The Pearson product-moment
correlation coefficient rxy is defined as:

22
yx

xy
xyr

σσ

σ
= (2)

Independent parameters have a correlation rxy=0 and a covariance σxy=0.

2.2 Fuzzy Values

Fuzzy values or fuzzy numbers are fuzzy sets whose members are real
numbers in which uncertainty is represented through a non-probabilistic
way (Siler and Buckley, 2005). For example, suppose you are driving and
trying to keep the speed at exactly 90 km/h. In practice the speed will vary
and it will be a fuzzy value around 90.

Mathematically, a fuzzy value is a function (called membership func-
tion)]1,0[:)(→Rxμ , which relates each number to its grade of member-
ship. Generally, this function may have any shape. The complexity of the
operations on fuzzy values depend on the shape: The more irregular the
membership function the more complicated the calculations (Fodor and
Bede 2006).

The so-called L-R fuzzy values are one of the most important and practi-
cal types of fuzzy numbers. For an L-R fuzzy value a , membership func-
tion is defined as follows (Fodor and Bede, 2006):

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−

≤
−

=
ax

a
axR

ax
a

xaL
x

ˆ)
ˆ

(

ˆ)
ˆ

(
)(μ (3)

where]1,0[[,0[:, →+∞RL are two continuous, decreasing functions ful-
filling 1)0()0(== RL and 0)1()1(== RL , â is a real number with 1)ˆ(=aμ
and aa, are two positive real numbers for which 0)()(== aa μμ .

If functions L and R are linear, a trapezoidal fuzzy value will be obtained
(Figure 2) represented by a quadruple dcbadcba ≤≤≤),,,,(.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>

≤<
−
−

≤≤

<≤
−
−

<

=

dx

dxc
cd
xd

cxb

bxa
ab
ax

ax

x

0

1

0

)(μ (4)

Fig. 2. A trapezoidal fuzzy number represented by (a, b, c, d)

As a particular case, a triangular fuzzy value (Figure 3) is a trapezoidal
fuzzy value in which the values b and c are equal. A triangular fuzzy
value can be represented either by a triple),,(cba or a quadruple

a d

b c
)(xμ

x

cbacbba ≤≤),,,,(. However, quadruple representation allows us to have a
unified algebra.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

<≤
−
−

<≤
−
−

<

=

cx

cxb
bc
xc

bxa
ab
ax

ax

x

0

0

)(μ (5)

Fig. 3. A triangular fuzzy number represented by (a, b, c) or (a, b, b, c)

2.3 Interval Values

If we can state with equal confidence that a value lies somewhere between
‘a’ and ‘b’, it can be referred to as an interval [a, b] in which the occur-
rence probability for all elements are the same (Hayes, 2003). For exam-
ple, if you are measuring a distance, you can never be certain about the re-
sult, but you may be able to say that it is certainly between 76 and 78
meters.

As Figure 4 shows, an interval value can be considered as a very simple
fuzzy value with a binary membership function }1,0{:)(→Rxμ :

⎩
⎨
⎧ ≤≤

=
elsewhere

bxa
x

0
1

)(μ (6)

a c

b
)(xμ

x

Fig. 4. An Interval value represented by [a, b]
Sometimes an interval is shown by the notation],[xx to emphasize the
lower and upper limitations (Hayes, 2003).

3 Propagation of Imprecision

Observations are used for analysis and the results are often used in deci-
sion-making processes. Imprecision in the observations will propagate
through the analysis and result in imprecise results. Knowledge on the im-
precision is necessary for consideration in the decision-making. Much
work has been done in the field of imprecision and error propagation
(Heuvelink, 1998; Bachmann and Allgöwer, 2002; Heuvelink and
Burrough, 2002; Karssenberg and de Jong, 2005). In the following we
show the basic operations used for the three types of imprecise values.

3.1 Operations on Normally Distributed Values

Let us assume we have normally distributed values x1, …, xn and apply a
function to these values. The function result is determined by applying the
function to the expected values, but what will be the variation? There are
several methods to assess the result of error propagation (Heuvelink, 1998,
pp. 36-42). The mathematically correct solution is the strict, algebraic
computation of the distribution, which results from applying the function.
However, the practicality of the solution is hampered by its complexity.

A different approach is the first order Taylor series method, which as-
sumes that the functions can be differentiated. The first order Taylor series
method replaces the function by its tangent and produces useful results if
the values contain only small deviations. The computation of the first order
Taylor series method for a function f is defined as

FΣF xx
T

f =2σ (7)

a b

)(xμ

x

1

where F is the Jacobi matrix for the function f and Σxx is the variance-
covariance matrix for the parameters.

The assumption of independent parameters simplifies the computation.
The variance-covariance matrix becomes a matrix in diagonal form and (7)
can be simplified to

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
i i

if x
f

2
22 σσ (8)

Monte Carlo simulation is a numerical solution and leads to the same re-
sult as the mathematically correct solution if the number of computations
is large enough. However, computational costs are high since computa-
tions must be repeated frequently to assess the distribution of the result.

3.2 Operations on Fuzzy Values

To operate on fuzzy values with general membership functions, we need
the concept of α-cut interval, which is defined for a fuzzy value
u and 10 ≤< α as shown in Figure 5. The definition is (Fodor and Bede,
2006):

})(|{],[][αμ
ααα ≥∈== xRxuuu (9)

Fig. 5. The concept of an α-cut interval

Then if u and v are two fuzzy values and f and o are two operators with
one and two operands, respectively, the following rules are used to find the
result for an α-cut (Fodor and Bede, 2006):

⎭⎬
⎫

⎩⎨
⎧=)(),(min)(

ααα ufufuf ,

⎭⎬
⎫

⎩⎨
⎧=)(),(max)(

ααα
ufufuf ,

(10)

)(xμ

x

α
1

αu
α

u

α][u

⎭⎬
⎫

⎩⎨
⎧=

ααααααααα vuvuvuvuvu ooooo ,,,min)(,

⎭⎬
⎫

⎩⎨
⎧=

ααααααααα
vuvuvuvuvu ooooo ,,,max)(.

(11)

The lists in (11) result from a Cartesian product. The result of a Cartesian
product u x v using an operation o is a list of all possible combinations
(ui o vi) of elements ui from u with elements vi from v. The elements of u in
this case are

⎭⎬
⎫

⎩⎨
⎧=

αα uuu , (12)

and the elements of v are

⎭⎬
⎫

⎩⎨
⎧=

αα vvv ,min . (13)

The results of applying an operation on fuzzy values are as follows (Fodor
and Bede, 2006):

⎭⎬
⎫

⎩⎨
⎧=

1100)(,)(,)(,)()(ufufufufsortuf , (14)

⎭⎬
⎫

⎩⎨
⎧=

1100)(,)(,)(,)()(vuvuvuvusortvu ooooo . (15)

In the case of trapezoidal fuzzy values,],[][0 dau = and],[][1 cbu = . So the
above formulas can be simplified (Fodor and Bede, 2006):

{ })(),(),(),()(dfcfbfafsortuf = , (16)

{ }vuvuvuvu ddaddaaavu ooooo ,,,min)(0 = ,

{ }vuvuvuvu ddaddaaavu ooooo ,,,max)(
0

= ,

{ }vuvuvuvu ccbccbbbvu ooooo ,,,min)(1 = ,

{ }vuvuvuvu ccbccbbbvu ooooo ,,,max)(
1

= ,

(17)

⎭⎬
⎫

⎩⎨
⎧=

1100)(,)(,)(,)()(vuvuvuvusortvu ooooo . (18)

The result of some operations (e.g., + and -) on trapezoidal fuzzy values
are also trapezoidal. However, for other operations (e.g., * and ÷) it is
non-trapezoidal. In such cases, the non-trapezoidal shape of the result can
be usually opted with a trapezoid although repeated operations may in-
crease the uncertainty (Fodor and Bede, 2006).

3.3 Operations on Interval Values

Operations on interval values are defined as follows (Hayes, 2003):

)}](),(max{)},(),([min{],[)(ufufufufuufuf == , (19)

==],[],[)(vvuuvu oo

}],,,max{},,,,[min{ vuvuvuvuvuvuvuvu oooooooo .
(20)

4 Lifting Error Propagation for Imprecise Values

4.1 Mathematical Concept Lifting

Lifting is a mathematical concept emerging from category theory
(MacLane and Birkhoff, 1999). It uses functors to map objects and func-
tions between these objects from one class to another class (Moggi, 1989).

Fig. 6. Mapping of precise values to imprecise values and functions on precise
values to functions on imprecise values.

Figure 6 shows the basic idea. A function o has an object v as the argument
and returns another object. Assume there is another object v’ with a map-
ping function f from v to v’. Lifting then is the concept of using the map-
ping function f not only for the objects v and v’ but also for the function o.
Thus we can write (compare Marquis, 2006)

v

v

v'

v’

o o

f

f

f

()() ()() ()''' vovfovof == (21)

or in case of two objects a and b

()() () ()() ()','',', baobfafobaof == . (22)

The mapping function f is called a functor. The application of a functor on
a given object or function is called lifting.

The functors we deal with are pointed functors. A pointed functor has a
specified natural equivalence. In our case the pointed functor maps from
precise to imprecise values.

4.2 Programming Paradigm Lifting

Lifting is a concept that can simplify programming. Assume we specify a
function, which takes two points and computes the distance between these
points. The points are defined as pairs of floating point numbers. The func-
tion will work correctly if it is applied to the correct data type but how can
we apply it to different data types, e.g., data types for moving points? In
this case the coordinates of the points and the distance between the points
depend on an additional parameter ‘time’. In an imperative programming
language that does not support polymorphism and generic programming
(such as C) we may use one of the following solutions:
• we copy the function and edit the copy such that it works with the new

data type or
• we take care of the differences whenever we call the function, by first

clarifying the temporal aspect and then computing the distance.
In a programming environment the first method will inevitably result in a
long list of slightly different versions of the same function. Each version is
applicable to only one data type. The second method may result in strange
errors if one of the programmers does not know about the limitations or
makes a mistake in the calling routine.

Lifting provides an elegant solution to that problem. The language must
be capable of two concepts:
• The language must be able to overload a function. Overloading a func-

tion allows using the same function name for different data types. Typi-
cal examples known from standard imperative languages are the basic
mathematical operations, which can be applied to different numerical
data types. A language used for lifting must provide this capability for
all types of functions including user-defined functions.

• The language must be a second-order language, i.e., the function must
support the use of functions as parameters for other functions.

Lifting only requires the definition of a functor. This functor can then be
used to automatically adapt functions to the data type.

4.3 Application of Lifting for Imprecise Values

How can we apply the concept of lifting to precise and imprecise values?
Starting point is a data type a for precise values. Parts of the definition for
basic mathematic operations in Haskell (e.g., Bird, 1998) are shown here:
class Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 abs :: a -> a
 negate :: a -> a

class (Num a) => Fractional a where
 (/) x y :: a -> a -> a
 recip :: a -> a

class (Fractional a) => Floating a where
 sqrt :: a -> a

class (Floating a) => Numbers a where
 sqr :: a -> a

Applying these functions to a new data type requires building the corre-
sponding instances. These instances can be constructed in a traditional way
by rewriting the code. The result for a new data type could look like the
following:
data MyNumbers a = MyNum a

instance (Floating (MyNumbers Float)) =>
 Numbers (MyNumbers Float) where
 sqr (MyNum x) = MyNum (x * x)

The disadvantage of this method has been shown in section 4.2. A functor
eliminates the necessity to rewrite the code. The definition for a class of
functors mapping from a data type a to a data type b a is
class Lifts b a where
 lift0 :: a -> b a
 lift1 :: (a -> a) -> b a -> b a
 lift2 :: (a -> a -> a) -> b a -> b a -> b a

The function lift0 maps a value from one class to another. The func-
tions lift1 and lift2 provide the same for functions with one or two
parameters. Functions with more than two parameters must be mapped re-
cursively.

We can now define the instance of above class Numbers for the data
type MyNumber a as follows
instance Lifts MyNumber a where
 lift0 x = MyNum x
 lift1 op x = MyNum (op x)
 lift2 op x1 x2 = MyNum (op x1 x2)

instance (Floating MyNumber) => Numbers MyNumber
where
 sqr x = lift1 sqr x

The lifting function maps the functionality of the existing data type to the
new data type. This avoids rewriting the code. The benefit becomes evi-
dent if an error must be fixed in the implementation. Instead of fixing all
instances, only the original instance must be fixed and this change auto-
matically affects all other instances.

5 Sample Implementation

In this section we describe how to implement lifting for the imprecise con-
cepts defined in section 2. The mapping of functions uses the error propa-
gation concepts shown in section 3. We now want to use these definitions
to define lifting functions as introduced in section 4.

The first step in each section is the definition of a data type. The opera-
tions necessary to propagate imprecision are concept dependent. The con-
cepts also use different parameters to describe the imprecision. These pa-
rameters are collected in corresponding data types.

5.1 Lifting Normally Distributed Values

Normally distributed values are defined by the expected value and the
variance, which are stored in this order in the data set. ND is a constructor
function, which creates the data set using the provided values.
data NormDist v = ND v v

Error propagation for normally distributed values requires the computation
of partial derivatives. Numerical differentiation using linearization is a
simple solution that provides an approximation. For a function f with pa-
rameters x1, x2, … the derivative in x1 is

() ()
ε

ε ,...,,..., 2121

1

xxfxxf
x
f −+

=
∂
∂ (23)

where ε is a small value specifying the length of the interval used for the
linearization. More sophisticated strategies can be found in the literature
(Press, Flannery et al., 1988). The local functions diff respectively
diff1 and diff2 provide lifting function (23).
instance Lifts NormDist Double where
 lift0 v = ND v 0
 lift1 op (ND v s) = ND (op v) (diff * s) where
 diff = ((op (v+epsilon)) - (op v)) / epsilon
 lift2 op (ND v1 s1) (ND v2 s2) =
 ND (op v1 v2) (diff1^2*s1 + diff2^2*s2)) where
 diff1 = ((op (v1+epsilon) v2) - (op v1 v2)) /
 epsilon
 diff2 = ((op v1 (v2+epsilon)) - (op v1 v2)) /
 epsilon

Lifting a precise value requires an assumption for a variance. Since the
value shall be precise, the variance is set to zero. Lifting a mathematical
operation op with one or two parameters uses numerical differentiation
and formula (8) to compute the variance of the function result.

This instance then provides the functionality to easily lift the basic
mathematical operations. This is done as shown in section 4.3.

5.2 Lifting Fuzzy Values

The data type for fuzzy values must store the four points necessary to de-
fine the trapezoidal representation shown in Figure 2. Other realizations
like triangular distribution functions may use different data types. F is
again the constructor function.
data Fuzzy v = F v v v v

The implementation for fuzzy values is equal to the examples above:
instance Lifts Fuzzy Double where
 lift0 v = F v v v v
 lift1 op (F a b c d) =
 listToFuzzyNum (sort cartProduct) where
 cartProduct = [(op a), (op b), (op c), (op d)]
 lift2 op (F a1 b1 c1 d1) (F a2 b2 c2 d2) =
 listToFuzzyNum (sort cartProduct) where
 cartProduct = [minimum cartProduct1,
 maximum cartProduct1,
 minimum cartProduct2,
 maximum cartProduct2]

 cartProduct1 = [(op a1 a2), (op a1 d2),
 (op d1 a2), (op d1 d2)]
 cartProduct2 = [(op b1 b2), (op b1 c2),
 (op c1 b2), (op c1 c2)]

The functions cartProduct, cartProduct1, and cartProduct2
define the Cartesian product as introduced in section 3.2.

5.3 Lifting Interval Values

The data type for the interval stores begin and end of the interval. I is
again a constructor function.
data Interval v = I v v

As seen in section 3, interval arithmetic is rather simple. Again we use the
Cartesian product to determine the boundaries of the resulting interval.
instance Lifts Interval Double where
 lift0 v = I v v
 lift1 op (I a b) = I (minimum cartProduct)
 (maximum cartProduct) where
 cartProduct = [(op a), (op b)]
 lift2 op (I a1 b1) (I a2 b2) =
 I (minimum cartProduct) (maximum cartProduct)
 where cartProduct = [(op a1 a2), (op a1 b2),
 (op b1 a2), (op b1 b2)]

6 Examples for Using the Lifted Operations

How can we now use the lifted function? The simplest example is using a
basic mathematic operation, e.g., by adding two numbers. This requires
typing a+b on the command line. Depending on the definition of the pa-
rameters a and b, we get different results. Table 1 shows the results.

A more complex example is the computation of the distance between
two points. The points are defined by a pair of coordinates in a plane coor-
dinate system. The distance is then defined as

() ()2
12

2
1212 yyxxs −+−= . (24)

Table 1. Results of addition for different types of values.

Type Values Result of a+b
precise values a = 5.0

b = 2.0
7.0

normally distributed a = ND 5.0 0.05
b = ND 2.0 0.04

ND 7.0 0.0899

interval a = I 4.85 5.15
b = I 1.88 2.12

I 6.73 7.27

fuzzy a = F 4.85 4.95 5.05 5.15
b = F 1.88 1.96 2.04 2.12

F 6.73 6.91 7.09 7.27

In Haskell the definition is
data Point f = Pt f f deriving Show

dist :: Numbers a => (Point a) -> (Point a) -> a
dist (Pt x1 y1) (Pt x2 y2) =
 sqrt (sqr(x1-x2) + sqr(y1-y2))

We can now again use different implementations of imprecise values to
test the implementation. Table 2 shows the results.

Table 2. Results of distance computation for different types of values

Type Values Result of dist
precise values ptD1, ptD2 :: Point Double

ptD1 = Pt 20 20
ptD2 = Pt 12 17

8.544

normally dis-
tributed

ptN1, ptN2 :: Point (NormDist Double)
ptN1 = Pt (ND 20 0.02) (ND 20 0.04)
ptN2 = Pt (ND 12 0.06) (ND 17 0.01)

ND 8.544 0.076

interval ptI1, ptI2 :: Point (Interval Double)
ptI1 = Pt (I 19.94 20.06) (I 19.88 20.12)
ptI2 = Pt (I 11.82 12.18) (I 16.97 17.03)

I 8.267 8.822

fuzzy ptF1, ptF2 :: Point (Fuzzy Double)
ptF1 = Pt (F 19.94 19.98 20.02 20.06)
 (F 19.88 19.96 20.04 20.12)
ptF2 = Pt (F 11.82 12.94 12.06 12.18)
 (F 16.97 16.99 17.01 17.03)

F 7.595 8.302 8.524
8.822

7 Conclusions and Future Work

In this paper we use the domains of precise and imprecise values as an ex-
ample. We showed different models of imprecise values in section 2 and
how to propagation imprecision in each model in section 3. In section 4 we

discussed the concept of mapping between different domains. We have
shown that it is possible to construct functors, which map precise values
and functions on these values to imprecise values. This allows the specifi-
cation of functions, which work with different kinds of values. As shown
in section 5.5 the defined functors allow a simple mapping of functions
from a simple domain to an extended domain. It can be generalized from
the results how we can use functors to map data and functions from one
domain to another domain.

References

Bachmann, A. and Allgöwer, B. (2002). Uncertainty Propagation in Wildland Fire
and Behaviour Modelling. International Journal of Geographic Information
Science 16(2): 115-127.

Bird, R. (1998). Introduction to Functional Programming Using Haskell. Hemel
Hempstead, UK, Prentice Hall Europe.

Erwig, M. and Schneider, M. (1999). Developments in Spatio-Temporal Query
Languages. Proceedings of 10th International Workshop on Database and Ex-
pert Systems Applications, Florence, Italy.

Fodor, J. and Bede, B. (2006). Arithmetics with Fuzzy Numbers: A Comparative
Overview. Proceeding of 4th Slovakian-Hungarian Joint Symposium on Ap-
plied Machine Intelligence, Herl’any, Slovakia.

Frank, A.U. (2005). Map Algebra Extended with Functors for Temporal Data.
Proceedings of the ER Workshop 2005 (CoMoGIS'05). J. Akoka et al. Kla-
genfurt, Austria, Springer-Verlag Berlin Heidelberg. LNCS 3770: 193-206.

Hayes, B. (2003). A Lucid Interval. American Scientist 91(6): 484-488.
Heuvelink, G.B.M. (1998). Error Propagation in Environmental Modelling with

GIS. London, Taylor & Francis.
Heuvelink, G.B.M. and Burrough, P.A. (2002). Developments in Statistical Ap-

proaches to Uncertainty and its Propagation. International Journal of Geo-
graphic Information Science 16(2): 111-113.

Karssenberg, D. and de Jong, K. (2005). Dynamic Environmental Modelling in
GIS: 2. Modelling Error Propagation. International Journal of Geographic In-
formation Science 19(6): 623-637.

MacLane, S. and Birkhoff, G. (1999). Algebra (3rd Edition), AMS Chelsea Pub-
lishing.

Marquis, J.-P. (2006). Category Theory, Stanford Encyclopedia of Philosophy.
Moggi, E. (1989). A Category-Theoretic Account of Program Modules. Category

Theory and Computer Science, Springer-Verlag, Berlin.
Navratil, G. (2006). Error Propagation for Free? GIScience, Münster, Germany,

Institute for Geoinfomatics, University Münster.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988). Nu-
merical Recipes in C - The Art of Scientific Computing. Cambrigde, Cam-
bridge University Press.

Siler, W. and Buckley, J.J. (2005). Fuzzy Expert Systems and Fuzzy Reasoning,
Wiley Press.

Viertl, R. (2002). On the Description and Analysis of Measurements of Continu-
ous Quantities. Kybernetika 38(3): 353-362.

